
Synthesis of Stealthy Deception Attacks with
Limited Resources

Uday Shankar
Student in School of Computer Science

Carnegie Mellon University
Pittsburgh, USA
us@cmu.edu

Advisor: Eunsuk Kang
Institute for Software Research

Carnegie Mellon University
Pittsburgh, USA

eskang@cmu.edu

Abstract—We study the security of Cyber-Physical Systems
(CPS) with respect to attacks on the supervisory control layer.
Specifically, we consider the sensory deception attacker model,
originally proposed in [1], in which attackers aim to coerce
the system into an unsafe state by altering the sensor readings
received by the supervisor, while also concealing their presence
from the supervisor. We modify this model by additionally placing
a bound on the number of modifications made by the attacker. We
present a method for the synthesis of such attackers, constructing
and using an Insertion Deletion Attack (IDA) structure as our key
technical tool.

Index Terms—discrete event systems, supervisory control,
cyber-physical systems, cyber-security, deception attacks

I. INTRODUCTION

Cyber-Physical Systems (CPS) are characterized by the
presence of computation that transforms input from physical
sensors into physical effects. Typical examples include anti-
lock braking systems in cars and automated control systems
in power plants. As evidenced by such examples, CPS often
appear in settings where safety is a vital consideration and
correctness cannot be compromised upon. This has led to the
development of an entire field focused on formal methods for
verifying correctness properties of CPS [2].

Not all undesirable behavior in CPS is caused by flaws in
the system design. There is also the possibility of an external
agent interfering with the system with the intention of inducing
some sort of malfunction. Several instances of such attacks
on CPS have been reported, with the prime example being
StuxNet [3]. These real-world examples necessitate a careful
study of attacks on CPS.

This paper considers sensory deception attacks, a particular
kind of attack on supervisor-controlled CPS. In such attacks,
the attacker attempts to manipulate the supervisor into allow-
ing the system to reach an unsafe state by interfering with
the information flow from the system to the supervisor. The
attacker additionally is required to remain stealthy, in the sense
that the behavior of the attacker-compromised system should
be indistinguishable from the normal behavior of the (un-
compromised) system from the point of view of the supervisor.
This attacker model was originally proposed in [1], and this
paper is largely an extension of that work.

However, in this paper we consider attackers less powerful
than those discussed in [1]. We do this by further restricting

our attackers by placing a finite bound on the total number
of actions they can take. This restriction can be used to
model various real-life scenarios. For instance, we may want to
construct minimally invasive attackers, simply because being
minimally invasive is good practice for attackers who want
to avoid detection. We may also want to model a situation
in which certain kinds of attacker moves are impossible. For
example, if the system and supervisor communicate via a wire-
less network in which the attacker has a foothold, the attacker
may be able to send bogus information to the supervisor, but
it might not be able to tamper with the legitimate information
sent by the system.

We present a method of synthesis of these restricted attack-
ers. The method revolves around the construction of a bipartite
graph which allows the attacker to keep track of all knowable
information about the states of the system and supervisor
and deduce how different actions might affect these states.
This graph is called an Insertion-Deletion Attack structure
(IDA), and the method of its construction is similar to the
construction of the same name in [1]. We additionally provide
an implementation for the construction of the IDA given a
system, supervisor, and other appropriate parameters.

The paper is organized as follows: in section II, we present
the chosen CPS model, and define some important background
concepts and notation. In section III, we formally define the
aforementioned “restricted attacker.” Section IV defines the
construction of the IDA, and section V proves that this IDA
serves as an appropriate search space containing precisely
the kinds of attackers we are looking for. Finally, section VI
discusses possible directions for future work.

II. PRELIMINARIES

We model the system G as a deterministic finite automaton
(DFA) with no marked states (X,Σ, δ, x0), where
• X is the (finite) set of states.
• Σ is the (finite) set of events.
• δ : X × Σ → X is a partial function that describes how

the system changes states as a response to the events.
• x0 ∈ X is the initial state.

Note that δ is only a partial function, despite the automaton
being labeled “deterministic.” This is different from the typical

definition of a DFA, but is the usual definition used in CPS
work [2].

We define a function δ∗ : X × Σ∗ → X recursively, via

δ∗(x, ε) = x

δ∗(x, se) = δ(δ∗(x, s), e)
(1)

and as is typical, we abuse notation by using δ when we mean
δ∗. This is a harmless abuse, however, because δ and δ∗ agree
on their common domain of X × Σ. Note that δ∗ is still a
partial function.

The language generated by G is defined in the usual
manner:

L(G) = {s ∈ Σ∗ | δ(x0, s)!} (2)

where δ(x0, s)! asserts that the partial function δ is defined
on the argument (x0, s). The set L(G) represents the “raw”
behavior of the system G by itself. The system by itself may
have some undesirable behavior. For instance, it may contain
states deemed unsafe that are reachable from the initial state.

In order to prevent the system from reaching such unsafe
states, we define the notion of a supervisor. Supervisors restrict
the behavior of the system to a “safe subset” by observing
the sequence of events executed by the system and issuing
corresponding control decisions, which selectively enable or
disable events from occurring. This leads to the definition of
a supervisor as a (potentially partial)1 function S : Σ∗ → 2Σ,
where 2Σ = P(Σ) is the set of all subsets of Σ. So, if
the system has executed a sequence of events s ∈ Σ∗, the
supervisor enables the set of events S(s) and disables all
others, meaning that the next event executed by the system
must be a member of S(s). However, in practice, supervisors
are not this powerful. We consider two impediments to the
supervisor:

• Uncontrollable events are events that the supervisor can
never disable. Such events might exist in practice because
of limited physical capability of the supervisor to disable
such events. The presence of uncontrollable events in-
duces a partition Σ = Σc t Σuc, where Σc is the set of
controllable events (the ones that the supervisor has the
capability to disable), and Σuc is the set of uncontrollable
events.

• Unobservable events are events that are executed by the
system, but which the supervisor cannot sense, due to e.g.
a limited number of installed sensors. Such events are
particularly painful for supervisors to deal with because
their presence means that the supervisor cannot be sure
of the system’s state (more on this later). The presence of
unobservable events induces a partition Σ = Σo t Σuo,
where Σo is the set of observable events (the ones the
supervisor can sense) and Σuo is the set of unobservable
events.

1This function might be partial because we don’t require it to be defined
on sequences of events in Σ∗ that are impossible under the control of the
supervisor.

(a) System (b) Supervisor

Fig. 1: A system, along with a supervisor that ensures the
system never enters the unsafe state 2. Example provided by
the authors of [1].

Using these concepts, we can define a more general version
of a supervisor called an admissible partial observation su-
pervisor (with respect to Σuc,Σc,Σuo,Σo). Such a supervisor
is defined as a function SP : Σ∗o → 2Σ with the property that
every γ in the range of SP satisfies Σuc ⊆ γ. The domain of
SP is only Σ∗o because the supervisor cannot sense, and hence
cannot react, to the occurrence of unobservable events, and the
second condition (called admissibility) forces the supervisor
to never disable an uncontrollable event. Henceforth, we only
work with admissible partial observation supervisors.

Now, we have all the pieces required to formally define
the controlled behavior of a system G with respect to the
supervisor SP , denoted L(SP /G). First, we define a projection
function Po : Σ∗ → Σ∗o, which simply deletes all unobservable
events to give the supervisors point of view of the system’s
execution.

Po(ε) = ε

Po(se) =

{
Po(s)e e ∈ Σo

Po(s) e ∈ Σuo

(3)

Now, we define L(SP /G) recursively, in a manner that mirrors
our earlier informal discussion.

ε ∈ L(SP /G)

s ∈ L(SP /G) ∧ e ∈ SP (Po(s)) ∧ se ∈ L(G)

⇐⇒ se ∈ L(SP /G)

(4)

It is difficult to work directly with this abstract definition
of a supervisor, so we instead work with the realization of a
supervisor as a DFA R = (Q,Σ, µ, q0). If we define

ΓR(q) = {e ∈ Σ | µ(q, e)} (5)

as the active event set at a state q ∈ Q, then the control
decisions are defined as follows.

SP (s) = ΓR(µ(q0, s)) (6)

In order for this realization to be admissible, we require
that (∀q ∈ Q)(∀e ∈ Σuc)(µ(q, e)!). This simply asserts
that uncontrollable events are always active, and hence never
disabled.

Example II.1. Consider the system G and supervisor R
(constructed with Σ = Σo = {a, b, c},Σc = {b, c}) depicted
in figure 1. Observe that in the system, δ(0, ac) = 2 and hence
ac ∈ L(G) and state 2 is reachable in the raw behavior of the
system. However, ac /∈ L(SP /G), because after reading a, the
supervisor R is in state B, where the event c is disabled. In
fact, it is not difficult to see that the system is in state 1 if and
only if the supervisor is in state B. Since the only way for
the system to reach state 2 is to be in state 1 and process the
event c, this means that state 2 is unreachable in the system
under the control of the supervisor.

With Σc = {a, b}, the supervisor must immediately disable
the event a from occurring to prevent the system from reaching
state 2. If both a and c are uncontrollable, then it is impossible
to design a supervisor that prevents the system from reaching
state 2.

Lastly, we make a few definitions that will be useful in later
parts of the paper. We define

URγ(S) = {x ∈ X | (∃y ∈ S)(∃s ∈ Σ∗uo ∩ γ)

(x = δ(y, s))}
(7)

as the unobservable reach of the set of states S under the
control decision γ. This is useful for producing estimates for
the state set of the system, as given a current estimate S and
a control decision γ, it tells us all possible states the system
could evolve to using only unobservable events, which are
invisible to the supervisor. We also define

NXe(S) = {x ∈ X | (∃y ∈ S)(x = δ(y, e))} (8)

as a function which simply lifts the system’s transition function
δ to work on sets. Let

Γ = {ΓR(q) | q ∈ Q} (9)

be the set of all control decisions of the supervisor. Finally,
we define a supervisor R̃ whose state set is Q̃ = Qt{dead}.
The idea is that the supervisor transitions to state dead when
it detects abnormal behavior; we model this by defining the
transition function of R̃ as µ̃(x, e) = µ(x, e) whenever µ(x, e)
is defined, and µ̃(x, e) = dead otherwise. Note that the control
decisions of R̃ are not the same as the control decisions of R.
We will refer to R̃ as the supervisor augmented with attacker
detection.

III. PROBLEM STATEMENT

In a sensor deception attack, the attacker has the capability
to tamper with the information flow from the system to the
supervisor. To be a bit more specific, we assume the attacker
has compromised a set Σa ⊆ Σo of the events. Whenever
the system emits an event in Σa, the attacker can choose to
mask the occurrence of this event from the supervisor. The
attacker also has the capability to generate fake events, making
the supervisor think the system executed an event when in
actuality nothing happened. These position of the attacker
relative to the system, supervisor, and projection Po is depicted
in figure 2.

Fig. 2: Interaction of the system G, the attacker fA and the
supervisor SP . P is the partial observation projection, denoted
in this paper as Po. Image from [1].

To formally define such an attacker, it is convenient to
distinguish between inserted events, deleted events, and true
system events. We define sets Σi

a = {ei | e ∈ Σa} and
Σd

a = {ed | e ∈ Σa}, which are copies of Σa with additional
marking to label them as insertions or deletions. Note that
Σa,Σ

i
a,Σ

d
a are pairwise disjoint. We also define Σe

a = Σi
atΣd

a

are the set of edited events. With this, we can define an attacker
as follows (definition taken from [1]).

Definition III.1. Given a system G and a subset Σa ⊆ Σo, an
attacker is defined as a (partial) function fA : (Σo ∪ Σe

a)∗ ×
(Σot{ε})→ (Σo∪Σe

a)∗ satisfying the following constraints.
• fA(ε, ε) ∈ (Σi

a)∗.
• fA(s, e) ∈ {e}(Σi

a)∗ if e ∈ Σo \ Σa.
• fA(s, e) ∈ {e, ed}(Σi

a)∗ if e ∈ Σa.

The function fA evaluated on argument (s, e) specifies the
action taken by the attacker when the history of events is s,
and the current event is e. The first constraint says that the
initial modification of the attacker (before there is any history)
must consist purely of inserted events. The second constraint
says that if an event outside of the attacker’s control occurs,
the attacker has no choice but to let it through. However, the
attacker can append a string of insertions after that event. The
third constraint is the same as the second, except that the
attacker has the option of deleting the current event, since
the current event is compromised by the attacker.

It is often convenient to specify the attacker function in
another way. As mentioned above, the attacker function fA
tells us the current modification, given the history and the
current event. We can also define a function f̂A that instead
tells us the modified version of an entire string of observable
events emitted by the system. This is easily defined recursively.

f̂A(ε) = fA(ε, ε)

f̂A(se) = f̂A(s)fA(s, e)
(10)

This formulation of the attacker allows us to define an
attacker that can only make a bounded number of actions.
First, define projections Pi : (Σo ∪ Σe

a)∗ → (Σi
a)∗ and

Pd : (Σo ∪ Σe
a)∗ → (Σd

a)∗ in the same manner as in (3).

Definition III.2. Given m,n ∈ N, a system G, and a
subset Σa ⊆ Σo, an m-insertion, n-deletion attacker (mInD

attacker) is defined as an attacker which additionally satisfies
the following two constraints for any s where f̂A(s) is defined

•
∣∣∣Pi(f̂A(s))

∣∣∣ ≤ m.

•
∣∣∣Pd(f̂A(s))

∣∣∣ ≤ n.

That is, a mInD attacker should never modify a string to
contain more than m insertions or n deletions.

We can now formally define how an attacker interacts with
the system and supervisor. This basically comes down to re-
moving the annotations on the edited events in the appropriate
way; for instance, the supervisor cannot differentiate between
inserted events and truly occurring events, and it cannot even
see the deleted events. To model this intuition, we define
PSe (ei) = e and PSe (ed) = ε for each e ∈ Σa, and PSe (e) = e
for any e ∈ Σo (and we extend PSe to strings in (Σo ∪ Σe

a)∗

in the natural way, as we showed in (1)). Similarly, we define
PGe (ei) = ε and PGe (ed) = e for each e ∈ Σa and PGe (e) = e
for e ∈ Σo to model the system’s point of view. Finally, let
M(ei) = M(ed) = e for each e ∈ Σa and M(e) = e for
e ∈ Σo.M is simply a function which removes the annotations
we placed on insertions and deletions.

Figure 2 now suggests how to define the interaction be-
tween the attacker and supervisor. The attacker and supervisor
together effectively form a new supervisor for the system SA,
whose control decisions are defined as SA(s) = (SP ◦ PSe ◦
f̂A)(s). This new supervisor has a corresponding controlled
language L(SA/G) that is defined as in (4).

Finally, we need to define the attacker’s goal. In a real
situation, the attacker might aim to cause damage to the
system. This is often modeled as reaching an unsafe state
in the system. So we designate a set of system states Xcrit

which are unsafe, and the attacker’s goal is to manipulate the
supervisor into allowing the system to reach a state in Xcrit.
The only requirement on Xcrit is that it should not be possible
to reach an unsafe state in the normal supervised system, when
no attacker is present. That is, for all s ∈ L(SP /G), we should
have δ(x0, s) /∈ Xcrit.

We now have all the tools we need to define a stealthy
attacker.

Definition III.3. Given a system G, a supervisor SP , and
Σa ⊆ Σo, a stealthy attacker fA is an attacker that satisfies
the following conditions.
• For all s ∈ L(SA/G), f̂A(Po(s))!.
• For all s ∈ L(SA/G), PSe (f̂A(Po(s))) ∈ Po(L(SP /G)).

In addition, we say that the attack is strongly successful2 if
there exists s ∈ L(SA/G) such that for every t ∈ L(SA/G)∩
P−1

o (Po(s)), δ(x0, t) ∈ Xcrit.

The first condition states that the attacker actually outputs
an action on every string it could possibly observe. The second
condition says that, from the supervisor’s point of view, the
attacked system is indistinguishable from the normal system.
And the strongly successful condition states that there is some

2A notion of a weakly successful attack is also defined in [1], but we won’t
need it here.

string s, where if the attacker ever sees Po(s) occurring,
the attacker is sure that the system has been compromised
(regardless of how the actual sequence of events executed by
the system might have interleaved unobservable events into
Po(s)).

We can finally state the problem: given a system G, a
supervisor R, a set of compromised events Σa, and bounds
m and n on the number of allowed insertions and deletions,
synthesize a strongly successful mInD attacker.

IV. INSERTION-DELETION ATTACK STRUCTURE

An insertion-deletion attack structure (IDA) is a graph
structure that captures all information about the system, su-
pervisor, and attacker that can be known to the attacker at any
given time. The labels on the edges are possible actions of
the supervisor (control decisions) or the attacker (insertions,
deletions, let event through). If an edge going from node a to
node b has label x, then action x has the effect of transforming
the states of the system, supervisor, and attacker from a to
b. This IDA construction is an extension of the bipartite
transition structure first presented in [4], and is closely related
to the IDA constructed in [1]. We first present the formal
definition, and then explain how it works. In the following,
when n ∈ N we write [n] to denote the set {0, 1, . . . , n}.

Definition IV.1. An m-Insertion, n-Deletion Insertion-
Deletion Attack structure (mInDIDA) A with respect to a
system G = (X,Σ, δ, x0), a set of compromised events Σa, a
supervisor equipped with attacker detection R̃ = (Q̃,Σ, µ̃, q0),
and bounds m,n ∈ N on the number of insertions and
deletions allocated to the attacker, is a 7-tuple

A = (QS , QE , hSE , hES ,Σ,Σ
e
a, y0)

where the components are defined as follows:
• QS = 2X × Q̃ × [m + 1] × [n + 1] is the set of S-

states, where S stands for supervisor and where each S-
state is of the form y = (IG(y), IS(y), ins(y), del(y)),
where IG(y) and IS(y) denote the plant state estimate
and the supervisor’s state, and ins(y) and del(y) denote
the number of insertion and deletion moves remaining.

• QE = 2X × Q̃ × [m + 1] × [n + 1] is the set of E-
states where E stands for Environment; each E-state is
of the form z = (IG(z), IS(z), ins(z), del(z)) where the
components are defined in the same way as in the S-states
case.

• hSE : QS × Γ → QE is the partial transition function
from S-states to E-states, where h(y, γ) = z if and only
if all of the following constraints hold.

– IG(z) = URγ(IG(y))
– IS(z) = IS(y)
– γ = ΓR̃(IS(y))
– ins(z) = ins(y)
– del(z) = del(y)

• hES : QE × (Σo ∪ Σea) → QS is the partial transition
function from E-states to S states satisfying the following

constraints: for any y ∈ QS , z ∈ QE , e ∈ Σo ∪ Σea, we
have hES(z, e) = y if and only if

y =



(NXe(IG(z)), µ̃(IS(z), e), ins(z), del(z))

if e ∈ ΓR(IS(z)) ∩ ΓG(IG(z))

(IG(z), µ̃(IS(z), PSe (e)), ins(z)− 1, del(z))

if e ∈ Σia
and M(e) ∈ ΓR(IS(z))

and ins(z) > 0

(IG(z), µ̃(IS(z), Pe(e)), ins(z), del(z)− 1)

if e ∈ Σda
and M(e) ∈ ΓR(IS(z)) ∩ ΓG(IG(z))

and del(z) > 0

• Σ is the set of events in G,
• Σea is the set of editable events.
• y0 ∈ QS is the initial S-state: y0 = ({x0}, q0,m, n).

Each state in a mInDIDA stores four things. The first two
keep track of the set of possible states of the system the state
of the supervisor. The second two keep track of the number
of insertion moves and deletion moves that remain available
to the attacker. The function hSE transitions from supervisor
to environment states by updating the set of possible states of
the system according to the control decision provided by the
supervisor. The function hES transitions from the environment
back to the supervisor by considering all possible attacker
actions. The first clause corresponds to a “let through event” -
if an event is feasible both in the system and in the supervisor’s
current control decision, one option is for the attacker to let
the event through without modification. The second clause
corresponds to an “insertion” - any compromised event that
is permissible according to the supervisor can be inserted, as
long as we still have insertion moves remaining. The resulting
state update changes the state of the supervisor accordingly,
but not the system. since the event was fake. And the number
of insertions we have available goes down by 1. The last clause
handles event deletions and is similar.

In practice, a mInDIDA can be constructed via a BFS,
starting from the initial state and growing every possible edge.
An example mInDIDA is presented in figure 3.

V. ANALYSIS

The first order of business is proving that all the information
stored in the IDA is correct. To precisely define what we mean
by this, we define the notion of an induced E-state.

Definition V.1. Given a mInDIDA A, we define the E state
induced by a string s ∈ (Σo∪Σe

a)∗ when starting in the E-state
z recursively as follows.

IE(z, ε) = z

IE(z, se) =

{
hSE(y,ΓR̃(IS(y))) y = hES(IE(z, s), e)

undefined otherwise

Intuitively, IE(z, s) denotes the E-state reached in A upon
starting from E-state z and taking the transitions given by

Fig. 3: A slightly abbreviated IDA constructed on the example
system and supervisor with m = n = 1, Σa = {b}. Key:
S-state , E−state , initial state, attacker detected, and system
compromise, bi: insert event b, bd: delete b, no suffix: let-
through. Image generated by our implementation.

the letters of s. We also define IE(s) = IE(z0, s), where
z0 = hSE(y0,ΓR̃(IS(y0))). This simply takes the “initial E-
state” as the canonical starting point.

The following so-called correctness lemma shows that the
number of insertions and deletions consumed by a string sA
matches the number of insertions and deletions according to
the state induced by sA in the mInDIDA, thus proving that
ins(z) and del(z) actually are equal to what they were intended
to represent. Versions of this lemma can be stated and proved
for the correctness of IG(z) and IS(z) as well, but the proofs
are all similar and hence omitted.

Lemma V.1. Given a system G, supervisor R̃, and a
mInDIDA A with embedded attack function fA, for any s ∈
L(SA/G), setting sA = f̂A(Po(s)), we have ins(IE(sA)) =
m− |Pi(sA)| and del(IE(sA)) = n− |Pd(sA)|.

Proof. By induction on |sA|. We check only insertion, as
deletion is identical.
• Base Case: If |sA| = 0 then sA = ε, so |Pi(sA)| = |ε| =

0 ≤ m. Also IE(sA) = z0 = hSE(y0,ΓR̃(IS(y0))).
Since an SE transition doesn’t change the insertion
count, ins(z0) = ins(y0) = m, and we have the desired

ins(IE(sA)) = m = m− |Pi(sA)|

• Induction Hypothesis: For any sA of length at most k,
if |Pi(sA)| ≤ m and |Pd(sA)| ≤ n, then ins(IE(sA)) =

m− |Pi(sA)|.
• Induction Step: Consider sAe ∈ f̂A(s) of length k + 1,

where e ∈ Σo ∪ Σea. By the inductive hypothesis,
ins(IE(sA)) = m− |Pi(sA)|. Let y = hES(IE(sA), e).
We compute

ins(IE(sAe)) = ins(hSE(y,ΓR̃(IS(y))))

= ins(y) = ins(hES(IE(sA), e))

If e ∈ Σo ∪ Σda, then |Pi(sAe)| = |Pi(sA)|, as e is not
an insertion. By definition of hES , we have

ins(IE(sAe)) = ins(hES(IE(sA), e))

= ins(IE(sA)) = m− |Pi(sA)|

= m− |Pi(sAe)|

If e ∈ Σia, then |Pi(sAe)| = |Pi(sA)| + 1, as e is an
insertion. By definition of hES , we have

ins(IE(sAe)) = ins(hES(IE(sA), e))

= ins(IE(sA))− 1 = m− |Pi(sA)| − 1

= m− (|Pi(sA)|+ 1) = m− |Pi(sAe)|

These correctness lemmas allow us to refer to the informa-
tion stored in a mInDIDA state and the “correct value” for
that information that might be derived from a string leading
to that state interchangeably.

Our goal now is to prove that the constructed mInDIDA
contains precisely the set of all stealthy mInD attackers, in
the following sense.

Definition V.2 (Embedded Attacker). An attacker fA is said to
be embedded in a mInDIDA A if (∀s ∈ Po(L(SA/G)))(∀t ∈
f̂A(s))[IE(t)!]. In words, fA is embedded in A if every attack
strategy given by fA induces a path in the mInDIDA (starting
from the initial state).

However, this is not quite true. In the mInDIDA from figure
3, there still exist red (attacker detected) states, so there is an
embedded attacker that is not stealthy. Fortunately, removing
these states is done simply using the BSCP algorithm [1]
[2]. This algorithm, given a specification, trims the minimal
number of states to prevent the attacker from reaching a red
state. There is only one nontrivial modification that we make
to this algorithm. We also remove E-states in the mInDIDA
with only a single outgoing insertion edge. This is because at
such states, the attacker is forced to win a race against the
system.

Algorithm ?? essentially treats the mInDIDA as a system
(whose event set is the set of all edge labels of the mInDIDA),
and the goal is to meet the specification, namely avoiding
red states. Since control decisions and non-attackable events
are those actions which are uncontrollable from the point of
view of the attacker, we set Euc = Γ ∪ (Σo \ Σa). Running
the algorithm produces a “pruned mInDIDA” which does not

Algorithm 1 Modified BSCP

Require: A is a mInDIDA, Atrim is A with red states
removed.
Step 1: Set H0 = (A0, E, g0, a0) = Atrim, i = 0, E =
Γ ∪ Σo ∪ Σe

a, Euc = Γ ∪ (Σo \ Σa).
Step 2.1: Set A′i = {a ∈ Ai | ΓA(a) ∩ Euc ⊆ ΓHi

(a)}.
Step 2.2: Set A∗i = {a ∈ A′i | e ∈ ΓA(a) =⇒ e ∈
ΓHi(a) ∨ ed ∈ ΓHi(a)}.
Step 2.3: Set Hi+1 = Trim(A∗i , E, gi � A

∗
i , a0).

Step 3: If Hi+1 = Hi, stop. Else increment i and go to
step 2.1.

Fig. 4: The mInDIDA from figure 3 after the pruning algo-
rithm is executed. Note the absence of red states. Observe
that in this case, all nodes below the edge bd incident to
the state ({1}, B, 1, 1) had to be removed, as if the attacker
makes the move bd, the attacker cannot do anything to prevent
event a /∈ Σa from occurring and going into a red state. Key:
S-state , E−state , initial state, attacker detected, and system
compromise, bi: insert event b, bd: delete b, no suffix: let-
through. Image generated by our implementation.

contain any red states and cannot uncontrollably lead to any
red states3. This pruned mInDIDA now has the property we
desire.

Lemma V.2. If a mInD attacker is stealthy, it is embedded
in the pruned mInDIDA.

Proof. If such an attacker fA were not embedded in the pruned
mInDIDA, then there exists strings s ∈ L(SA/G), tA ∈ f̂A(s)

3For a more detailed treatment of the BSCP algorithm, see [2]

and an event e ∈ Σo ∪ Σea such that IE(tA) is defined but
IE(tAe) is undefined. There are two ways this can happen.

1) IE(tAe) was undefined in the original mInDIDA. This
means that hES(IE(tA), e) is undefined. We split into
cases based on whether e is an insertion, a deletion, or
simple a let-through event.

a) If e is a let-through event, then hES(IE(tA), e)
is undefined if and only if e /∈ ΓR̃(IS(z)) ∩
ΓG(IG(z)). By our earlier lemma, this means that
e either cannot occur in the system in its current
state, or is disabled by the supervisor. This contra-
dicts s ∈ L(SA/G).

b) If e is an insertion, then hES(IE(tA), e) is un-
defined if and only if Me(e) /∈ ΓR̃(IS(z)) or
ins(z) = 0. The first violates stealthiness, since we
are trying to insert an event that is disabled, and
the second violates the fact that we are a mInD
attacker.

c) If e is a deletion, then hES(IE(tA), e) is undefined
if and only ifMe(e) /∈ ΓR̃(IS(z))∩ΓG(IG(z)) or
del(z) = 0. The first violates s ∈ L(SA/G), and
the second violates the fact that we are a mInD
attacker.

2) IE(tAe) is defined in the original mInDIDA, but is
removed by the pruning algorithm. The BSCP algorithm
has the property that it returns a mInDIDA that is
maximally permissive [2] under the conditions imposed
by the specification Atrim. We only delete red states,
which a stealthy attacker cannot every visit, and states
where a race might happen, which an attacker should
never visit to avoid racing with the system. Hence, if
IE(tAe) is pruned by the algorithm, the attacker is either
not stealthy or raced with the system, both of which
result in a contradiction.

Lemma V.3. If an attacker is embedded in the pruned
mInDIDA, it is a stealthy mInD attacker.

Proof. Since the mInDIDA correctly keeps track of the num-
ber of insertions and deletions remaining, and this quantity
is nonnegative at all states in the mInIDA, any embedded
attacker is guaranteed to be a mInD attacker. Since the pruned
mInDIDA contains no red states, any embedded attacker is
guaranteed to be stealthy.

These two lemmas together tell us that the set of attackers
embedded in the pruned mInDIDA is precisely the set of
stealthy mInD attackers. Hence, it is possible to extract any
of these desired attackers from the pruned mInDIDA.

VI. CONCLUSIONS AND FUTURE WORK

We took the model of an attacker from [1] and considered
the problem of synthesizing an attacker of more limited
capability, in the sense that the number of attacker moves is
limited. When restricting the attacker to at most m insertion
moves and at most n deletion moves, we constructed an IDA

with a multiplicative overhead of at most (m + 1)(n + 1)
compared to the IDA presented in [1]. We also modified
the implementation given by the authors of [1] to compute
mInDIDAs for simple systems and supervisors.

One obvious generalization of the work in this paper is to
assign each attacker move an arbitrary cost instead of just a
cost of 1 for insertions and 1 for deletions, and then attempt
to synthesize a minimum-cost attacker. We are also interested
in investigating notions of attacker complexity completely
distinct from having a cost associated to each move. Finally,
we are looking for methods to avoid the construction of the
entire IDA, which can grow exponentially in the size of the
system under partial observation.

REFERENCES

[1] R. M. Góes, E. Kang, R. Kwong, and S. Lafortune, “Stealthy deception
attacks for cyber-physical systems,” 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pp. 4224–4230, 2017.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Springer Publishing Company, Incorporated, 2nd ed., 2010.

[3] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of cyber war,”
Survival, vol. 53, no. 1, pp. 23–40, 2011.

[4] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,”
IEEE Transactions on Automatic Control, vol. 61, no. 8, pp. 2140–2154,
2016.

